Компьютер Шаг за Шагом

Исследование работы основных логических элементов. Исследование и синтез логических схем Краткие теоретические сведения

Е.Н. Малышева

Основы

Микроэлектроники

Лабораторный практикум

Тобольск - 2012

УДК 621.3.049.77

Печатается по решению кафедры технологии и технических дисциплин ТГПИ им. Д.И. Менделеева


Малышева Е.Н. Основы микроэлектроники. Лабораторный практикум: Учебное пособие. – Тобольск: ТГПИ им. Д.И. Менделеева, 2012. – 60 с.

Рецензент: Новоселов В.И., к.ф.-м. н., доцент кафедры физики и МПФ

© Малышева Е.Н, 2012

© ТГПИ им. Д.И. Менделеева, 2012
Пояснительная записка

Данное учебное пособие выполнено в виде рабочей тетради и предлагается в сопровождение к лабораторному практикуму для студентов педагогических вузов, изучающих основы микроэлектроники. Лабораторный практикум проводится с использованием стенда универсального и посвящен исследованию элементов, узлов и устройств цифровой техники.

1. Исследование работы основных логических элементов.

2. Исследование работы триггеров.

3. Исследование работы регистров.

4. Исследование работы комбинационных преобразователей кодов.

5. Исследование работы счетчиков.

6. Исследование работы сумматора.

7. Исследование работы арифметическо-логического устройства.

8. Исследование работы оперативного запоминающего устройства.

9. Исследование работы модели ЭВМ.

Каждая работа включает в себя следующие разделы:

Теоретический материал, освоение которого необходимо для выполнения работы;

Описание работы;

Вопросы к зачету данной работы.


Лабораторная работа № 1.

Исследование работы основных логических элементов

Цель работы: изучение принципов действия и экспериментальное исследование работы логических элементов.

Общие сведения

Логические элементы вместе с запоминающими элементами составляют основу вычислительных машин, цифровых измерительных приборов и устройств автоматики. Логические элементы выполняют простейшие логические операции над цифровой информацией. Их создают на базе электронных устройств, работающих в ключевом режиме, который характеризуется двумя состояниями ключа: «Включено» - «Отключено». Поэтому цифровую информацию обычно представляют в двоичной форме, когда сигналы принимают только два значения: «0» (логический нуль) и «1» (логическая единица), соответствующие двум состояниям ключа. Эти два положения (логическая 1 и логический 0) составляют электронный алфавит, или основание двоичного кода.

На вход любого цифрового устройства поступает набор кодовых слов, которые оно преобразует в другие кодовые слова или слово. Кодовые слова на выходе являются некой функцией, для которой входные кодовые слова приходятся аргументом этой функции. Их называют функции алгебры логики.

Логические функции, как и математические, можно записать в виде формулы или таблицы – таблицы истинности, которая приводит все возможные сочетания аргументов и соответствующие им значения логических функций. Устройство, предназначенное для выполнения определенных функций алгебры логики, называется логическим элементом. Рассмотрим некоторые их них.

Логический элемент НЕ

логического отрицания (инверсии) . Логическим отрицанием высказывания A называется высказывание X, истинное в том случае, когда А ложно .

Логический элемент И

Предназначен для выполнения функции логического умножения (конъюнкции). Логическим умножением называют такую связь между двумя простыми высказываниями A и B, в результате которой сложное высказывание X истинно лишь в том случае, когда одновременно истинны оба высказывания.



Логический элемент И-НЕ

Предназначен для выполнения функции отрицания логического умножения (отрицания конъюнкции). Отрицанием умножения или функцией Шеффера называют такую связь между двумя простыми высказываниями A и B, в результате которой сложное высказывание X ложно лишь в том случае, когда одновременно истинны оба высказывания.


Порядок выполнения работы

Оборудование: стенд универсальный, блок питания, плата П1, технологические карты I-1 − I-9.

1. Проанализируйте работу светодиодного индикатора стенда для определения уровней логических сигналов.

2. Исследуйте работу логических устройств, последовательно используя технологические карты. Выполните для каждой схемы следующие задания:

а. заполните таблицы истинности,

б. используя полученные данные, определите логические элементы,

в. назовите выполняемые ими функции алгебры логики,

г. обозначьте логические элементы на схеме соответствующими условными обозначениями,

д. запишите формулы, выражающие связь между входными и выходными характеристиками.



x1 x2 y1 x3 x4 y2 y3


x1 x2 y1 y2 y3 y4

Вопросы к зачету

1. Каковы назначение и область применения логических элементов?

2. Дайте определение основным логическим функциям.

3. По светодиодному индикатору определите уровень логического сигнала на выходе схемы.

4. Определите по выходным данным типы логических элементов в схеме.

5. По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.


Лабораторная работа № 2.

Общие сведения

Из логических элементов строятся более сложные цифровые устройства. Одним из наиболее распространенных узлов цифровой техники является триггер.

Триггер – это устройство, обладающее двумя состояниями устойчивого равновесия и способные под воздействием управляющего сигнала переходить скачком из одного состояния в другое.

Каждому состоянию триггера соответствует определенный (высокий или низкий) уровень выходного напряжения, который может сохраняться как угодно долго. Поэтому триггеры называют простейшими цифровыми автоматами с памятью, т.е. их состояние определяется не только входными сигналами в данный момент времени, но и их последовательностью в предыдущие такты работы триггера.

В настоящее время большинство триггеров выполняется на основе логических элементов в виде интегральных микросхем (ИМС). Они применяются как переключающие элементы самостоятельно или входят в состав более сложных цифровых устройств, таких как счетчики, делители частоты, регистры и др.

По способу записи информации триггеры подразделяют на синхронные и асинхронные устройства. В асинхронных триггерах запись информации осуществляется непосредственно с поступлением входных сигналов. В синхронных (тактовых) триггерах информация будет записана только при наличии тактового синхроимпульса.

По функциональному признаку различают триггеры: с раздельным запуском (RS-триггеры), с элементами задержки (D-триггеры), со счетным пуском (Т-триггеры), универсальные (JK-триггеры).

Как правило, у триггера два выхода: прямой () и инверсный (). Состояние триггера определяется по величине напряжения на прямом выходе . Входы триггеров имеют следующие обозначения:

S – раздельный вход установки триггера в единичное состояние;

R – раздельный вход установки триггера в нулевое состояние;

D – информационный вход;

C – вход синхронизации;

T – счетный вход и другие.

Основой всех триггерных схем является асинхронный RS-триггер. Существует два типа RS-триггеров: построенных на логических элементах «ИЛИ-НЕ» и на логических элементах «И-НЕ». Они различаются уровнем активных сигналов и имеют свое обозначение (см. таблицу).

RS-триггеры имеют режимы работы: установка в нулевое или единичное состояние, хранения, запрещенный режим. Запрещенная комбинация (на оба входа подаются активные сигналы) реализуется при подаче противоречивой команды: одновременно установиться в единичное и нулевое состояние. При этом на прямом и инверсном выходах реализуются одинаковые уровни напряжения, чего по определению не должно быть.

Тактируемые D-триггеры имеют вход D для подачи информации (0 или 1) и синхровход С. На вход С подаются синхроимпульсы (С=1) от специального генератора импульсов. D-триггеры избавлены от запрещенной комбинации входных сигналов.

Счетный Т-триггер имеет один управляющий вход Т. Смена состояний триггера происходит всякий раз, когда меняется управляющий сигнал. Т-триггеры одного типа реагируют на фронт импульса, т.е. на перепад 0-1, другие - на срез (перепад 1-0). В любом случае частота выходных импульсов в 2 раза ниже частоты входных. Поэтому Т-триггеры используются как делители частоты на 2 или счетчики по модулю 2. В виде ИМС триггеры этого типа не выпускаются. Их можно легко создать на основе D- и JK-триггеров.

JK-триггеры относятся к универсальным, имеют информационные входы J и K и синхронизирующий вход С. Они используются при создании счетчиков, регистров и других устройств. При определенном переключении входов JK-триггеры могут работать как RS-триггеры, D- триггеры и Т-триггеры. Благодаря такой универсальности они имеются во всех сериях ИМС.

Порядок выполнения работы

Оборудование: стенд универсальный, блок питания, плата П2, технологические карты II-1 − II-4.

1. Выделите в схеме триггер.

2. Выполните для каждой схемы следующие задания:

а) запишите название триггера,

б) составьте таблицу изменений состояний в зависимости от входных сигналов, активные сигналы обозначайте стрелкой (­ - высокий уровень – логическая единица, ¯ - низкий уровень – логический ноль),

в) определите тип входа (R или S), укажите эти обозначения в таблице и обозначьте на схеме (для карт II-1 и II-2),

г) обозначьте режимы работы триггера,

д) составьте временную диаграмму состояний триггера.

HL1 HL2 x1 x2 y1 y2 Режим работы

Триггер ______________________________________________________

HL1 HL2 x1 x2 y1 y2 Режим работы


Триггер ______________________________________________________

HL1 HL2 HL3 HL4 Режим работы



Триггер ______________________________________________________

D C HL1 HL2 Режим работы


Вопросы к зачету

1. Что такое триггер?

2. Объясните назначение входов триггеров.

3. Что такое активный уровень сигнала?

4. В чем отличие синхронных от асинхронных триггеров?

5. Объясните характер «запрещенного» состояния в RS-триггере.

6. Расскажите по диаграмме о состоянии триггера в каждый такт работы.

7. По маркировке интегральных микросхем, расположенных на используемой плате, дайте их характеристику.


Лабораторная работа № 3.

Общие сведения

Регистр – это операционный узел, состоящий из триггеров и предназначенный для приема и хранения информации в двоичном коде . Длина кодовых слов, записываемых в регистр, зависит от количества составляющих его триггерных ячеек. Т.к. триггер может принимать в данное время только одно устойчивое состояние, то, к примеру, для записи 4-разрядного слова необходимо иметь регистр из четырех триггерных ячеек.

По способу записи кодовых слов различают параллельные, последовательные (сдвигающие) и универсальные регистры. В параллельных регистрах запись кодового слова осуществляется в параллельной форме, т.е. во все триггерные ячейки одновременно. В последовательном регистре запись кодового слова происходит последовательно, начиная с младшего или старшего разряда.

Все триггеры, входящие в состав регистра, объединены общим входом синхронизации, некоторые типы схем имеют общий вход R для операции обнуления.

Параллельный 3-разрядный регистр
Информация поступает в виде параллельного кода. Входы обозначим X, Y, Z. На тактовые входы всех триггеров одновременно подается логический сигнал C (команда «запись»). Во время фронта импульса C срабатывают все триггеры. Информация хранится в параллельном регистре в виде параллельного кода и может быть считана с выходов триггеров: Q1,Q2,Q3.
Последовательный 3-разрядный регистр
Записываемое число поступает на один вход Х в виде последовательного кода, т.е. значения разрядов передаются последовательно. При поступлении каждого импульса С в момент его фронта в каждом триггере записывается значение логического сигнала на его входе.

Порядок выполнения работы

Оборудование: стенд универсальный, блок питания, платы П2, П3, перемычка, технологические карты II-5, II-6, III-1, III-2.

1. Запишите название устройства с указанием его разрядности.

2. Проанализируйте работу двухразрядных регистров.

3. Выполните для каждой схемы следующие задания:

а) запишите название регистра,

б) запишите в регистр несколько различных кодовых слов, результаты внесите в таблицу зависимости выходных состояний от входных сигналов,

в) нарисуйте условное обозначение устройства,

II-5 (П2)

Выходы D2 D1 Q2 Q1

II-6 (П2)

_______________________________________________________________

Выходы D Q2 Q1

Вывод: ________________________________________________________

________________________________________________________

4. Для четырехразрядных регистров выполните задания:

а) запишите название регистра с указанием его разрядности,

б) зарисуйте внутреннюю логическую структуру,

в) запишите в регистр несколько различных кодовых слов, результаты внесите в таблицу зависимости выходных состояний от входных сигналов,

г) сделайте вывод: за сколько тактов записывается в данном регистре одно кодовое слово.

III-1 (П3)

_______________________________________________________________


Вход Выходы
D Q4 Q3 Q2 Q1


Вход Выходы
D Q4 Q3 Q2 Q1

Вывод: _________________________________________________________

_________________________________________________________

III-2 (П3)

_______________________________________________________________


Входы Выходы
D4 D3 D2 D1 Q4 Q3 Q2 Q1


Вывод: ___________________________

___________________________

Вопросы к зачету

1. Какое устройство называется регистром? Для чего он предназначен?

2. Какие типы регистров знаете? Чем они различаются?

3. Объясните понятие «разрядность». Что означает выражение «4-разрядный регистр»?

4. Каким образом необходимо изменить функциональную схему, чтобы из двухразрядного регистра получить четырехразрядный?

5. Сколько разных слов можно записать с помощью 2- (4-) разрядного регистра?

6. Объясните на каждой функциональной схеме, как вы осуществляли запись кодового слова?


Лабораторная работа № 4.

Общие сведения

Комбинационные преобразователи кодов предназначены для преобразования m-элементного параллельного кода на входах цифрового автомата в n-элементный код на его выходах, т.е. для преобразования кодового слова из одной формы в другую. Связь между входными и выходными данными можно задать с помощью логических функций или таблиц истинности. Наиболее распространены такие типы преобразователей кодов, как шифраторы, дешифраторы, мультиплексоры, демультиплексоры.

Шифраторы используются в системах ввода информации для перевода единичного сигнала на одном из его входов в многоразрядный двоичный код на выходах. Так, сигнал от каждой клавиши на клавиатуре, обозначающей цифру или букву, поступает на соответствующий вход шифратора, а на его выходе этот символ отображается в двоичного кодового слова. Дешифраторы выполняют обратную операцию и используются в системах вывода информации. Для визуальной оценки выведенной информации дешифраторы используют вместе с системами индикации. Одним из типов индикаторов являются 7-сегментные индикаторы на светодиодах или жидких кристаллах. Для этого выходные сигналы дешифратора переводятся в код 7-сегментного индикатора.

Мультиплексоры решают задачу выбора информации от нескольких источников, демультиплексоры – задачу распределения информации по нескольким приемникам. Эти устройства используются в процессорных системах цифровой техники для связи отдельных блоков процессора между собой.

Порядок выполнения работы

Оборудование: стенд универсальный, блок питания, плата П4, технологические карты IV-1, IV-2, IV-3.

1. Проанализируйте работу дешифратора.

2. Выполните для схем IV-1 и IV-2 следующие задания:

а) составьте таблицу зависимости выходных состояний от входных сигналов,

б) сделайте вывод: из какой системы кодирования в какую устройство переводит?

в) сколько разрядов имеет двоичное число в схеме IV-2? Какую задачу выполняет тумблер SA5?

Мультиплексор

3. Проанализируйте работу схемы, содержащей мультиплексор и выполните задания:

а) найдите на схеме мультиплексор,

б) проверьте, откуда информация поступает на входы мультиплексора,

в) проверьте, с помощью какого устройства задается адрес мультиплексору,

г) задайте мультиплексору адрес того информационного входа, сигнал с которого вы хотите послать на его выход,

д) заполните таблицу зависимости выходного сигнала от входной информации и заданного мультиплексору адреса, вводя различные адреса и подавая различную информацию на входы.


Адрес № D-входа, соеди-нившегося с выходом Входная информация Выход Y
А2 А1 А0 D0 D1 D2 D3 D4 D5 D6 D7

Вопросы к зачету

1. Какое устройство называется дешифратором? Для чего он предназначен?

2. Какое устройство называется мультиплексором? Для чего он предназначен?

3. Какие тип индикации используется в схеме IV-2?

4. Что означает выражение «двоичная система кодирования информации» (десятичная, шестьнадцатиричная)?

Лабораторная работа №2

Литература:

2. В.С. Ямпольский Основы автоматики и ЭВТ. – М.: Просвещение. - 1991. - §3.1 ‑3.4

Ход работы:

  1. Включить терминал, подключиться к локальной сети и загрузить сайт «Основы микроэлектроники». Выбрать номер лабораторной работы, зарегистрироваться и приступить к выполнению заданий согласно появляющимся на экране инструкциям и данному описанию.
  2. В каждом из 10 заданий выделить из приведенной схемы цифрового автомата узел, содержащий только логические элементы, и изобразить его принципиальную схему, используя УГО российского стандарта
  3. Смоделировать работу каждой схемы средствами Electronic Workbench и составить таблицу истинности исследуемого устройства
  4. Определить логическую функцию исследуемого устройства и привести его условное графическое изображение (УГО)
  5. В каждом задании составить дополнительно две схемы реализации той же логической функции на элементах 2И-НЕ (элемент Шеффера) и элементах 2ИЛИ-НЕ (элемент Пирса), используя минимальное количество вентилей
  6. В задании 11 по аналогии с предыдущими схемами дополнить приведенное устройство схемой узла, позволяющего подавать на входы Х1¸Х3 произвольную комбинацию логических сигналов и индицировать состояние каждого входа и выхода. Исследовать работу схемы аналогично предыдущим заданиям

Отчет к каждому заданию лабораторной работы оформлять по образцу, приведенному в ПРИЛОЖЕНИИ 1.

При защите работы уметь объяснить каждый из полученных результатов.

ПРИЛОЖЕНИЕ 1

Фрагмент отчета (на примере одного задания)

Задание 1.

Пример схемы, приведенной в задании.

В таком виде перерисовывать её не нужно !

Фрагмент отчета по данному заданию приводится ниже.

Задание 1: выполняемая схемой функция ‑ «2И-НЕ»

Схема: УГО: Таблица истинности:

«2И-НЕ» на элементах Шеффера. «2И-НЕ» на элементах Пирса.

ПРИЛОЖЕНИЕ 2

УГО и таблицы истинности некоторых логических элементов

1. Элемент «2И-НЕ»

2. Элемент «2ИЛИ-НЕ»

3. Элемент «исключающее ИЛИ»

ПРИЛОЖЕНИЕ 3

Примеры условных графических обозначений логических элементов по ГОСТ (российский стандарт) и ANSI (American National Standard Institute)

УГО по ANSI УГО по ГОСТ Функциональное назначение
«2И» (2-Input AND Gate)
«3И» (3-Input AND Gate)
«2И-НЕ» (2-Input NAND Gate)
«2ИЛИ» (2-Input OR Gate)
«2ИЛИ-НЕ» (2-Input NOR Gate)
«3ИЛИ-НЕ» (3-Input NOR Gate)
«НЕ» (NOT Gate)
«исключающее ИЛИ» (2-Input XOR Gate)
«исключающее ИЛИ-НЕ» (2-Input XNOR Gate)
6-входовый сумматор по модулю 2 (6-Input XOR Gate)

Лабораторная работа № 3.



Исследование триггеров RS-, RST-, D- и JK-типов.

Литература:

1. А.А. Коваленко, М.Д. Петропавловский. Основы микроэлектроники: Учебное пособие. ‑ Барнаул: Изд‑во БГПУ, 2005. – 222 с.

2. В.С. Ямпольский. Основы автоматики и электронно-вычислительной техники. – М.: Просвещение. – 1991. – 223 с.

4. Руководство к выполнению виртуальных лабораторных работ с помощью программы моделирования электрических схем Electronic Workbench 5.12

Ход работы:

  1. Включить терминал, подключиться к локальной сети и загрузить сайт «Основы микроэлектроники». Выбрать номер лабораторной работы, зарегистрироваться и приступить к выполнению заданий согласно появляющимся на экране инструкциям и данному описанию
  2. Исследуйте работу асинхронного RS-триггера с инверсными входами на логических элементах 2И-НЕ.

Пользуясь программой Electronics Workbench, соберите схему триггера, приведенную на рисунке.

Для управления триггером используйте переключатели (Switch), подсоединяющие входы к клемме плюса питания (V cc) либо к клемме земли (Ground), а для индикации состояния входов и выходов – пробники (соответственно Green Probe и Red Probe).

Исследование провести в следующем порядке:

Таблица состояний триггера

№ комбинации Операция
Установка выхода

В сокращенном варианте таблицу состояний RS-триггера с инверсными входами принято изображать в следующем виде (при данной комбинации входных сигналов выход Q устанавливается в указанное состояние независимо от его предыдущего состояния):

Здесьсимвол (t+1) означает состояние триггера «в следующем такте», т.е. после установления выхода в соответствии со входными сигналами

Примечание: (в этой и других подобных таблицах приняты следующие обозначения ):

  1. Исследуйте работу асинхронного RS-триггера с прямыми входами на логических элементах 2И-НЕ.

Для этого добавьте к собранной схеме еще 2 элемента 2И-НЕ, чтобы получить триггер с прямыми входами (см. рисунок), и на основе эксперимента в среде Electronics Workbench по аналогии с предыдущим заданием заполните таблицу его состояний

  1. Исследуйте работу синхронизируемого RS-триггера (RST-триггера).

Для этого откройте схему RST-триггера (файл E:\MeLabs\Lab3\rst_trig_analis.EWB), ко входам которого подключен генератор слова (Word Generator), а все входные и выходные сигналы контролируются логическим анализатором (Logic Analyzer). Разверните панель генератора слова и установите для него режим пошаговой работы (Step). Введите в память генератора 16-ричные коды слов Вашего варианта. Разверните панель логического анализатора. Включите моделирование и, последовательно нажимая ЛКМ на находящуюся на панели генератора слова клавишу «Step», сгенерируйте всю тестовую последовательность. Зарисуйте в тетрадь полученные логическим анализатором диаграммы. Заполните потактовую таблицу состояний триггера.

Таблица состояний триггера

Информац. сигнал Номера тактов
C
R
S
Q
  1. Исследуйте работу статического и динамического D‑триггеров. Откройте схему параллельно включенных статического и динамического D‑триггеров (файл E:\MeLabs\Lab3\D_trig.EWB), ко входам которых подключен генератор слова (Word Generator), а все входные и выходные сигналы контролируются пробниками.

Разверните панель генератора слова. Из таблицы состояний выпишите по тактам двоичные коды слов и, преобразовав их в 16-ные, введите в память генератора слов. Включите моделирование и, последовательно нажимая ЛКМ на находящуюся на панели генератора слова клавишу «Step», сгенерируйте всю тестовую последовательность. Заполните потактовую таблицу состояний триггеров.

Таблица состояний триггеров

Информац. сигнал Номера тактов
C
D
Q стат.
Q дин.
  1. Откройте схему JK-триггера с динамическим управлением (jk_триг_анализ).

Разверните панель генератора слова и установите для него режим пошаговой работы (Step). Введите в память генератора 16-ричные коды слов Вашего варианта. Включите моделирование и, последовательно нажимая ЛКМ на находящуюся на панели генератора слова клавишу «Step», сгенерируйте всю тестовую последовательность. Зарисуйте в тетрадь полученные логическим анализатором диаграммы. Заполните потактовую таблицу состояний триггера.

Таблица состояний триггера

Информац. сигнал Номера тактов
C
J
K
Pre
Clr
Q

Замечание: В отличие от ранее исследовавшихся схем в этом задании исследуется работа конкретной микросхемы 7476 (Dual JK MS‑SLV FF (pre, clr)), в связи с чем при моделировании необходимо к соответствующим выводам подключить источник питания Vcc и заземление GND. В задании задействованы выводы только одного из JK-триггеров (первого). Входы Pre (предустановка) и Clr (очистка) играют роль установочных входов S и R соответственно.

  1. Выберите из библиотеки Digital интегральную схему JK-триггера 7472 (And‑gated JK MS‑SLV FF (pre, clr)) и соберите на ней схему счетного триггера. Обратите внимание, что на информационных входах используется логика 3И. Вывод NC микросхемы – свободный (не используется).

Подайте на вход триггера однополярные амплитудой 5 В прямоугольные импульсы от функционального генератора требуемой частоты, получите осциллограммы входного и выходного сигналов. Продемонстрируйте их преподавателю.

Для описания алгоритма работы логических схем используется математический аппарат алгебры логики. Алгебра логики оперирует двумя понятиями: событие истинно (логическая "1") или событие ложно (логический "0"). События в алгебре логики могут быть связаны двумя операциями: сложения (дизъюнкции), обозначаемой знаком U или +, и умножения (конъюнкции), обозначаемой знаком & или точкой. Отношение эквивалентности обозначается знаком =, а отрицание – чертой или апострофом (") над соответствующим символом.

Логическая схема имеет n входов, которым соответствуют n входных переменных X 1 , … X n и один или несколько выходов, которым соответствуют выходные переменные Y 1 …. Y m . Входные и выходные переменные могут принимать два значения X i = 1 или X i = 0.

Переключающая функция (ПФ) логической схемы связывает при помощи логических операций входные переменные и одну из выходных переменных. Число ПФ равно числу выходных переменных, при этом ПФ может принимать значения 0 или 1.

Логические операции . Наибольший практический интерес представляют следующие элементарные операции (функции).

Логическое умножение (конъюнкция),

Логическое сложение (дизъюнкция),

Логическое умножение с инверсией,

Логическое сложение с инверсией,

Суммирование по модулю 2,

Равнозначность.

Логические элементы . Существуют цифровые интегральные микросхемы, соответствующие основным логическим операциям. Логическому умножению соответствует логический элемент "И". Логическому сложению соответствует логический элемент "ИЛИ". Логическому умножению с инверсией - логический элемент "И-НЕ". Логическому сложению с инверсией – логический элемент "ИЛИ-НЕ". Операции инверсии соответствует логический элемент "НЕ". Существуют микросхемы, реализующие и многие другие логические операции.

Таблицы истинности . Основным способом задания ПФ является составление таблицы истинности, в которой для каждого набора входных переменных указывается значение ПФ (0 или 1). Таблица истинности для логического элемента "НЕ" (логическая операция) имеет вид

Вход Х Выход Y

1.1. Исследование характеристик логического элемента "ИЛИ-НЕ"

Схема исследования логического элемента "ИЛИ-НЕ", представлена на рис. 1.

На схеме рис. 1 входы логического элемента "ИЛИ-НЕ" подключены к генератору слов, формирующего последовательность двоичных чисел 00, 01, 10 и 11. Правый (младший) двоичный разряд каждого числа соответствует логической переменной Х1, левый (старший)– логической переменной Х2. К входам логического элемента также подключены логические пробники , которые загораются красным светом при поступлении на этот вход логической "1". Выход логического элемента подключен к логическому пробнику, который загорается красным светом при появлении на выходе логической "1".

Построение схемы исследования логического элемента "ИЛИ-НЕ"

Запустите при помощи ярлыка на рабочем столе Windows программу Electronics Workbench .

Построение схемы рис. 1 произведем в два этапа: сначала разместим как показано на рис. 1 пиктограммы элементов, а затем последовательно соединим их.

1. Щелкните по кнопке

панели библиотек компонентов и контрольно-измерительных приборов. Из появившегося окна логических элементов вытащите пиктограмму логического элемента NOR ("ИЛИ-НЕ").

2. Щелкните по кнопке

Из появившегося окна последовательно вытащите пиктограммы логических пробников .

3. Разверните логические пробники, так как показано на рис. 1. Для этого на панели функций воспользуйтесь кнопкой поворота

4. Щелкните по кнопке

панели библиотек компонентов и контрольно-измерительных приборов. Из появившегося окна индикаторов вытащите пиктограмму генератора слов

5. Расположите методом буксировки пиктограммы элементов так, как показано на рис. 1 и соедините элементы согласно рисунку.

6. Двойным щелчком кнопки мыши откройте лицевую панель генератора слов .

В левой части панели генератора слов отображаются кодовые комбинации в шестнадцатеричном коде, а в нижней части - в двоичном.

7. Заполним окно шестнадцатеричного кода кодовыми комбинациями, начиная с 0 в верхней нулевой ячейке и далее с прибавлением 1 в каждой последующей ячейке. С этой целью щелкните по кнопке , в появившемся окне предустановок включите опцию Up counter и щелкните по кнопке Accept .

8. В окне Frequency установите частоту формирования кодовых комбинаций равной 1 Гц.

Последовательности двоичных чисел 00, 01, 10 и 11 соответствует в шестнадцатеричном коде - 0, 1, 2, 3. Запрограммируем генератор на периодическое формирование указанной последовательности чисел.

9. Наберите в окне Final число0003 ищелкните на кнопкеCycle .

10. Запустите процесс моделирования при помощи выключателя. Наблюдайте, при каких сочетаниях входных сигналов на выходе логического элемента появится "1". Щелкая по кнопке Step , заполните в Отчете таблицу истинности для элемента "ИЛИ-НЕ". Остановите процесс моделирования при помощи выключателя.

11. Сохраните файл в папке с вашей Фамилией под именем Zan_17_01 .

Цель работы . Ознакомление с основными функциями и законами алгебры логики, характеристи­ками логических микросхем, основами анализа и синтеза простых и сложных логических схем.

Краткие теоретические сведения.

Анализ работы цифровых устройств и синтез логических цепей произ­водится на основе математического аппарата алгебры логики или «булевой» алгебры, оперирующей только двумя понятиями: истинным (логическая «1») и ложным (логический «0»). Функции, отображающие такую информацию, а также устройства, формирующие функции алгебры логики, называются логическими. Логические функции нескольких переменных определяют характер логических операций, в результате которых набору входных переменных x 0 , x 1 ,…, x n -1 ставится в соответствие выходная переменная F

F = f (x 0 , x 1 ,…, x n -1 ).

Функция преобразования характеризуется таблицей, в которой каждой комбинации входных переменных соответствует значение выходной переменной F . Ее называют таблицей истинности.

Основными функциями алгебры логики, с помощью которых можно осуществлять любые логические преобразования, являются логическое умножение (конъюнкция), логическое сложение (дизъюнкция) и логическое отрицание (инверсия).

Алгебра логики позволяет преобразовывать формулы, описывающие сложные логические зависимости, с целью их упрощения. Это помогает в конечном итоге определять оптимальную структуру того или иного цифрового автомата, реализующего любую сложную функцию. Под оптимальной структурой принято понимать такое построение автомата, при котором число входящих в его состав элементов минимально.

Основные законы алгебры логики .

Переместительный закон:

a + b = b + а; ab = ba .

Сочетательный закон:

(a + b) + c = a + (b + c); (ab)c = a(bc).

Распределительный закон:

a(b + c) = ab + ac; a + bc = (a + b)(a +c).

Закон поглощения:

a + ab = a(1 + b) = a; a(a + b) = a + ab = a.

Закон склеивания:

ab + a = a ; (a + b )(a + ) = a .

Закон отрицания:

или
.

Логические элементы . Логические элементы используют в качестве значений входных и выходных напряжений лишь два уровня: «высокий» и «низкий». Если логическому «0» соответствует напряжение низкого уровня, а логической «1» – высокого, то такую логику называют положительной, и наоборот, если за логический «0» принимают напряжение высокого уровня, а за логическую «1» – напряжение низкого уровня, то такую логику называют отрицательной. В транзисторно-транзисторной логике (ТТЛ) напряжение логического «0» – U 0 со­став­ляет десятые доли вольт (менее 0,4 В), а напряжение логической «1» – U 1 >2,4 В. Логические элементы реализуют простейшие функции или систему функций алгебры логики.

Таблица 1

П ростейшей функцией алгебры логики является функция НЕ. Она реализуется с помощью инвертора, условное графическое обозначение которого приведено на рис. 1. На вход инвертора подается величинаX , которая может принимать два значения: «0» и «1». Выходная величина Y , при этом тоже принимает два значения: «1» и «0». Взаимно однозначное соответствие X и Y дается таблицей истинности (табл. 1), причем значение выходной величины Y зависит не от предыдущих значений, а лишь от текущего значения входной величины X : Y = .

Это справедли­во для всех логических элементов, не имеющих памяти, у кото­рых в таблице истинности значение Y не зависит от порядка строк.

Таблица 2

Л огическими элементами, реализующими функции логиче­ского сложения и логического умножения, являются элементы ИЛИ и И. Таблицы истинности для этих элементов однозначно связывают значение выходной величиныY со значениями двух (или более) входных величин х l , х 2 , ... x n . Условные графические обозначения логических эле­ментов ИЛИ и И приведены соответственно на рис. 2 и 3, а их таблицы истинности – в таблицах 2 и 3. Например, для логического элемента 2-ИЛИ, реализую­щего дизъюнкцию

Y = х l + х 2 или Y = х l х 2 ,

а для элемента 2-И, реали­зую­щего конъюнкцию

Y = х l х 2 или Y = х l х 2 .

Таблица 3

Н а наборе логиче­ских элементов И, ИЛИ, НЕ можно реализовать любую сколь угодно сложную логи­ческую функцию, поэ­тому данный набор элемен­тов на­зывают функциональ­но пол­ным.

На практике часто используется расширенный набор логических элементов, позволяющих также составлять функционально полные системы. К ним относятся элементы:

ИЛИ-НЕ (элемент Пирса), реализующий функцию

;

И-НЕ (элемент Шеффера), реализующий функцию

.

Их обозначения и таблицы истинности приведены на рис. 4 и в табл. 4.

Таблица 4


В частности функционально полные системы могут состоять из эле­мен­тов только одного типа, например, реализующих функцию И-НЕ либо ИЛИ-НЕ.

Комбинационные логические цепи – это такие цепи, выходные сигналы которых однозначно определяются сигналами, присутствующими на их входах в рассматриваемый момент времени и не зависят от предыдущего состояния.

Набор логических элементов, входящих в состав учебного стенда по основам цифровой техники не содержит элементов, реализующих функцию ИЛИ-НЕ, что ограничивает число вариантов построения логических схем при их синтезе и позволяет составлять схемы только в базисе элементов И-НЕ.

Прежде чем перейти к вопросам анализа и синтеза логических устройств в заданном базисе элементов (И-НЕ), необходимо составить таблицу, в которую будут сведены все возможные формы представления выходных сигналов указанных элементов при условии, что на их входы поданы логические переменные х l и х 2 . При синтезе схем можно использовать два технических приема: двойное инвертирование входного исходного выражения или его части и применение теорем Де-Моргана. При этом функция преобразуется к виду, содержащему только операции логического умножения и инверсии, и переписывается через условные обозначения операции И-НЕ и НЕ.

Последовательность проведения анализа и синтеза комбинационных логических цепей:

    Составление таблицы функционирования логической цепи (таблицы истинности).

    Запись логической функции.

    Минимизация логической функции и преобразование ее к виду, удобному для реализации в заданном базисе логических элементов (И-НЕ, НЕ).

Пример проведения анализа и синтеза логических цепей .

Пусть необходимо построить мажоритарную ячейку (ячейку голосования) на три входа, т.е. такую ячейку, у которой сигнал на выходе равен единице тогда, когда на двух или трех входах цепи присутствует сигнал единицы, в противном случае выходной сигнал должен быть равен нулю.

Вначале заполним таблицу истинности (табл. 5). Поскольку в данном случае имеются три входных сигнала х 1 , х 2 , х 3 , каждый из которых может принимать одно из двух возможных значений (0 или 1), то всего может быть восемь различных комбинаций этих сигналов. Четырем из этих комбинаций будет соответствовать выходной сигнал F , равный единице.

Таблица 5

x 1

x 2

x 3

Пользуясь данными табл. 5, можно запи­сать логическую функцию, кото­рую должна реализовать синтезируемая цепь. Для этого нужно представить эту функцию в виде суммы логических произведений, соответствующих тем строкам табл. 5 (3, 5-7), для которых функция F равна единице. Аргументы записываются без инверсии, если они равны единице и с инверсией, если равны нулю.

Если в синтезируемой таблице истинности выходная величина чаще принимает значение «1», то синтезируются строки, в которых выходная величина равна «0».

При выполнении заданной процедуры получим функцию

F = . (1)

Для минимизации (упрощения) данной функции нужно применить основные законы алгебры логики. Возможна следующая последовательность преобразований, например, с применением закона склеивания (теоремы Де-Моргана):

F = =

+
=
. (2)

Как видно, полученное конечное выражение гораздо проще исходного.

Аналогично проводится анализ (составление таблиц истин­ности) и более сложных логических схем.

Для выполнения задания предлагается набор наиболее распространенных логических элементов (рис. 5).

Рис. 5. Набор логических элементов для выполнения задания

Задание к лабораторной работе

1. Составить таблицы истинности для всех логических элементов, приведенных на рис. 5.

2. Для каждого логического элемента из набора представленных на рис. 5. составить логические выражения, реализующие их функции в базисе логических элементов НЕ и И-НЕ и начертить полученные тождественные схемы.

3. Собрать рассмотренные схемы на стенде и, путем перебора комбинаций входных сигналов, составить их таблицы истинности.

4. Используя законы отрицания (теоремы Де-Моргана) произвести преобра­зование минимизиро­ван­ной функции (2) для реализации ее в базисе логических элементов НЕ и И-НЕ и начертить полученную тождественную схему.

5. Собрать представленную схему на стенде и, путем перебора комбинаций входных сигналов, проверить соответствие ее работы таблице истинности (табл. 5).

Контрольные вопросы

    Что такое функционально полная система и базис логических элементов?

    В чем особенности синтеза логических устройств?

    В чем заключаются принципы минимизации логических устройств?

    Назовите основные операции булевой алгебры.

    Что отражают теоремы булевой алгебры? Сформулировать теоремы Де-Моргана: поглощения и склеивания.

    Какие цифровые устройства называются комбинационными?

ЛАБОРАТОРНАЯ РАБОТА № 5

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении