Компьютер Шаг за Шагом

Высококачественный предусилитель от вадима могильного. Высококачественый умзч nataly

На фото: предусилитель «Натали» в корпусе спутникового ресивера


В статье речь пойдет о моём варианте сборки предварительного усилителя «Натали» с удачным решением проблемы корпуса.

Этот проект стал очередным долгостроем в моем списке и побил все сроки по выполнению. Дело в том, что мысль о сборке предусилителя появилась больше года назад, а вместе с мыслью в моем ящичке для деталей поселились почти все необходимые для этой схемы компоненты.

И, как это часто бывает, весь энтузиазм внезапно куда-то испарился, так что пришлось свернуть все начатое на неопределенное время. Хотя почему неопределенное… очень даже определенное – до наступления осенних холодов, когда все летние дела, которых было очень много в этом году, будут завершены и появится свободное время для паяния.

О схеме и деталях


Схему выбирал долго, очень долго! Путь к этому предварительному усилителю начинался с использования в качестве ПУ с регулятором тембра специализированных микросхем вроде LM1036 или TDA1524, но меня от этого греха благополучно отговорили местные форумчане. Далее была схема, взятая с какого-то иностранно сайта на трех ОУ типа TL072 с регулировкой ВЧ и НЧ. Даже вытравил ПП и собрал, и слушал некоторое время этот пред, но не легла душа к нему.

Потом обратил внимание на схему знаменитого предусилителя Солнцева, и уже во время поиска информации по ПУ Солнцева наткнулся на схему, напоминающую солнцевскую в связке с пассивным РТ Матюшкина. Это была . Это было как раз то, что мне надо!

Немного упростив схему предусилителя и, доработав ее под себя, получил вот такой результат. Переход на одноэтажное питание и удаление «лишних» деталей позволило несколько упростить разводку платы, сделать ее односторонней и главное немного уменьшить размеры ПП. В схеме ничего существенного не менял, что могло бы ухудшить качество звука, только убрал ненужные мне функции обхода регулятора тембра, баланса и блок тонкомпенсации.

В схему регулятора тембра ничего своего не вносил, но все равно понадобилось разводить плату заново, т.к. не нашел в интернете готовую одностороннюю печатку нужного мне размера. Коммутация режимов темброблока сделана на отечественных реле РЭС-47.

Для того, чтобы сделать нужное мне управление регулятором тембра и предусилителем на несколько дней погрузился в теорию принципов работы счетчиков и триггеров отечественных микросхем. Для предусилителя выбрал корпус от спутникового ресивера, отжившего свое, в котором имелось довольно большое окошко, и его нужно было заполнить чем-то красивым и полезным. Так вот, захотелось мне сделать так, чтобы была визуальная информация о режимах регулятора тембра, и лучше, если это будут не светодиоды, а привычные глазу и мозгу цифры. В результате нарисовалась такая схема из трех МС.

К561ЛЕ5 задает импульсы, которые поступают на входы К174ИЕ4 и К561ИЕ9А. Счетчик на ИЕ9 управляет 4-мя ключами, переключающими реле на РТ Матюшкина. Одновременно с этим счетчик на ИЕ4 меняет показания на семисегментном индикаторе АЛС335Б1, указывая, в каком режиме находится регулятор тембра в данный момент. Цифра «0» соответствует режиму с минимальным уровнем низких частот, цифра «3» – максимальным. Еще один простой электронный переключатель выполнен на МС К155ТМ2. Одна половина микросхемы управляет релюшкой, переключающей режимы индикатора уровня сигнала, вторая половина отвечает за реле селектора входов. Ну, и типовая схема индикатора уровня сигнала на МС LM3915 отдельно для каждого канала.

Блок питания сделан на базе трансформатора ТП-30, разумеется с перемотанной под нужные напряжения вторичной обмоткой.

Все напряжения стабилизированные:
+/- 15В - на / LM337 для питания платы предусилителя
+9В на 7805 для питания реле и блока управления
+5В опять же на для питания USB звуковой карты

О настройке и возможных проблемах

Несмотря на всю кажущуюся сложность схемы и множество деталей, при правильной сборке и применении заведомо исправных и рекомендованных для этой схемы компонентов, можно с большой долей вероятности отгородить себя от неприятных сюрпризов, которые могут возникнуть при сборке данного ПУ. Единственная часть всей этой схемы, которая нуждается в настройке – это собственно сама плата предусилителя. Нужно установить ток покоя, проверить уровень постоянки не выходе, и форму сигнала.

Рекомендованный ток покоя для этого ПУ 20-22 мА, и рассчитывается он по падению напряжения на 15-ти омных резисторах R20, R21, R40, R42. Для тока 20-22 мА на этих резисторах должно падать 300-350 мВ (300:15=20, 350:15=22). Падение напряжения, а соответственно и ток можно регулировать в ту или иную сторону изменением номинала резисторов R9, R10, R30, R31 (в оригинале схемы 51 Ом). Большему току покоя соответствует большее сопротивление резистора и наоборот. В своем варианте, вместо постоянных резисторов 51 Ом, я впаял многооборотные подстроечные номиналом 100 Ом, что позволило без лишних усилий и с высокой точностью выставлять нужный ток покоя.

Две неприятности , с которыми может столкнуться человек, решивший повторить данный предусилитель - это возбуд, и постоянка на выходе. Причем, как правило, первая проблема порождает вторую. Сначала нужно убедиться в наличии или отсутствии постоянной составляющей на выходе каждого буфера и каждого ОУ. Допускается небольшое количество постоянки, но именно небольшое, грубо говоря не более нескольких мВ.

Если постоянки нет, я вас поздравляю! Если есть – ищем в чем причина, а причин не так уж и много. Это либо ошибка в монтаже, либо «не та» деталь, либо где-то есть возбуд. Первым делом нужно внимательно осмотреть плату на предмет непропая или наоборот – слипшихся дорожек, перепроверить все ли детали нужного номинала вы используете, и если все правильно остается третий вариант, т.е. возбуд. Для его поиска вам понадобится осциллограф.

Сам я столкнулся с этой проблемой. Во всех четырех буферах была постоянка на выходе в размере 100-150 мВ. И причиной ее возникновения оказалась как раз-таки «не та» деталь. Дело в том, что вместо операционных усилителей OPA134 у меня были установлены NE5534, которые не совсем подходят для применения в этой схеме. Долго и безуспешно я боролся с этой проблемой, а проблема исчезла сама собой после замены ОУ на OPA134.

О расположении и соединении


Из-за того, что имеющийся корпус был не очень большого размера, пришлось рисовать все платы заново, чтобы хоть на пару сантиметров сделать их компактнее. Размещение плат в корпусе получилось очень плотным, но к счастью все вместилось. Все – это плата предусилителя, регулятора тембра, сдвоенная плата блока управления и индикации, USB звуковая карта, трансформатор блока питания и плата выпрямителей-стабилизаторов, и две маленькие платы селектора входов и регулятора громкости и ВЧ.


Все общие провода соединил в одной точке, на плате регулятора громкости и высоких частот. Это избавило от пугающей меня проблемы гула и фона, которые возможны при неправильно разведенной земле.


Опять же из-за стесненных условий, плату управления и индикации пришлось сделать составной, состоящей из одной большой и одной маленькой платы. Соединяются они между собой через штырьковый разъем.


Все платы крепил к шасси корпуса через вот такие пластиковые изолирующие проставки. Это позволило полностью изолировать платы от контакта, как с металлическим корпусом, так и друг от друга, в местах, где этого не нужно.

Удобный корпус

Расскажу немного и о самом корпусе. Как я уже упоминал – в качестве корпуса для предусилителя используется корпус от спутникового ресивера. Старичок верой и правдой служил много лет, несколько раз ремонтировался и после очередной поездки в мастерскую был переправлен мне с диагнозом «труп».

Хорошие были раньше корпуса, большие! Именно по причине своих размеров и большого окна я и выбрал этот корпус. На лицевой панели кроме надписей не оказалось ничего лишнего. Остались, конечно 3 незадействованный кнопки, но это не страшно. Закрасил надписи матовой краской из балончика, купленного в автомагазине. Краска процентов на 98 совпала по цвету с той, которой был покрашен корпус изначально. Разницу можно заметить, только если очень присмотреться.


В качестве ручек для этих регуляторов установил , которые кстати . Они отлично (на мой взгляд) вписались в общий дизайн предусилителя, который выдержан в серебристо-черном цвете.

О звуке и впечатлениях

И настало время рассказать о самом интересном, о том что же получилось в итоге. А в итоге получилась еще одна хорошая игрушка в моей коллекции звуковоспроизводящей аппаратуры.

Схема несомненно заслуживает внимания и того, чтобы ее повторяли. Звучание готового устройства понравилось, оно вносит какой-то свой окрас в музыку. Несмотря на всего лишь 4 ступени в регуляторе тембра Матюшкина, не могу сказать, что регулировок низких частот не хватает. Четырех позиций регулятора НЧ вполне достаточно для того, чтобы подобрать нужный уровень низких частот для конкретного стиля музыки и своих предпочтений.
Любите взрывной бас? Переключаем темброблок в четвертое положение и пусть колонки рвутся! Диапазона регулировок по высоким тоже хватает с избытком при положении ручки максимально вправо, количество высоких начинает резать слух.

Схема предварительного усилителя с регулятором тембра.

Приветствую, друзья. Ниже в статье представлен проект предварительного усилителя от Максима Васильева, который по сути является переделкой предусилителя Сухова путем перевода схемы со 157 серии микросхем на импорт. Более подробную информацию вы можете найти на КОТЕ и форуме vegalab по запросу "Полный усилитель Васильева". Принципиальная схема:

Для увеличения изображения кликните на картинке.

В схеме применены сдвоенные операционные усилители. Например, можно поставить OPA2134P, TL072 или NE5532, кому как нравится или что из этого на данный момент есть под руками. На следующем рисунке показано расположение выводов микросхем, у вышеуказанных она одинаковая, поэтому независимо от того, какую МС вы примените, в плате никаких изменений вносить не нужно:

О том какие микросхемы звучат лучше мы писать не будем, об этом очень много информации вы сможете найти на радиолюбительских форумах, а их в сети предостаточно.

Питание двух-полярное +/- 12…15 Вольт.

В качестве регуляторов громкости, баланса и тембров применены переменные резисторы группы “А” (импортные), если будете использовать отечественные переменники – выбирайте с группой “В”

Печатная плата выполнена из двухстороннего стеклотекстолита. Верхний слой не травится, он используется в качестве экрана. Размеры платы 70х158 мм.

Внешний вид печатной платы показан на двух следующих рисунках:

На плату добавлен двух-полярный стабилизатор напряжения 2 х 15 Вольт на микросхемах 78L15 и 79L15. Ниже на рисунке показано расположение выводов у транзистора 2N5551:

Принципиальную схему и печатную плату в формате LAY можно скачать по прямой ссылке с нашего сайта. Размер файла архива для скачивания - 0,53 Mb.

Современные цифровые источники звука (CD-проигрыватели, ЦАПы и т.п.) имеют очень низкий уровень шумов. Гораздо ниже, чем винил или магнитная лента. Из-за этого требования к шумам последующего усилительного тракта на сегодняшний день стали гораздо выше, чем в эпоху аналогового звука. В свете этих требований при разработке описанного ниже предварительного усилителя в первую очередь ставилась задача получения качественного звучания при ультранизком уровне шумов без применения экзотических или дорогостоящих компонентов.

В большинстве каскадов автор применил свои любимые операционные усилители NE5532 , но в некоторых узлах используются LM4562 , так как в последнее время они стали доступнее и позволяют получить гораздо меньшие искажения при работе на низкоомную нагрузку.

Что за меломан (и уж тем более аудиофил) без винила? Именно для них предусилитель оснащен двумя фонкорректорами под разные типы звукоснимателей. Кроме того, конструкция имеет регулятор тембра , наглядный индикатор уровня и симметричные выходы , что сегодня стало практически стандартом для высококачественной аудио-аппаратуры .

Структурная схема предусилителя показана на рисунке:

Увеличение по клику

Все модули собраны на отдельных печатных платах, что упрощает их размещение в корпусе и облегчает коммутацию.
В этой части цикла статей приводится описание схемы непосредственно усилителя с регуляторами громкости, баланса и тембра, а также организации симметричного выхода.

Принципиальная схема модуля предварительного усиления:

Увеличение по клику

Все сопротивления (не только резисторы, но и сопротивления активных компонентов, например сопротивление базы транзистора) генерируют шумы , уровень которых зависит от величины сопротивления и температуры. Так как повлиять на температуру в помещении прослушивания довольно сложно, то единственный способ уменьшить шумы сопротивлений — это уменьшать величину самого сопротивления. Отсюда вытекает главная особенность представленной схемы — использование низкоомных резисторов на всём пути звукового сигнала.

Если для постоянных резисторов выбор низкоомных номиналов не представляет проблем, то для переменных резисторов (для регуляторов громкости, баланса и тембра) номинальный ряд существенно ограничен. Обычно в этих цепях можно увидеть переменные резисторы на 47кОм, 22кОм, в лучшем случае 10 кОм. В данной конструкции Дуглас Селф применил переменные резисторы на 1кОм — это, пожалуй, минимальный номинал из доступных среди переменных резисторов.

Кстати, вот характеристики, которых удалось достичь:

(Измерения проводились при напряжении питания 17В, при отключенных регуляторах тембра, с использованием симметричных входов и выходов)

Коэффициент гармоник+шум (входной сигнал 0,2В, выходной — 1В) 0,0015% (1 kHz, B = 22 Hz до 22 kHz)
0,0028% (20 kHz, B = 22 Hz до 80 kHz)
Коэффициент гармоник+шум (входной сигнал 2В, выходной — 1В) 0,0003% (1 kHz, B = 22 Hz до 22 kHz)

0,0009% (20 kHz, B = 22 Hz до 80 kHz)

Отношение сигнал/шум (при входном сигнале 0,2В) 96 dB (B = 22 Hz до 22 kHz) 98,7 dBA
Полоса воспроизводимых частот: 0,2 Hz до 300 kHz
Максимальный уровень выходного сигнала (при 0,2В входного): 1,3 В
Регулировка баланса +3,6 dB до -6,3 dB
Регулировка низких частот ±8 dB (100 Hz)
Регулировка высоких частот ±8,5 dB (10 kHz)
Разделение каналов (R->L) -98 dB (1 kHz) -74 dB (20 kHz)
Разделение каналов (L->R) -102 dB (1 kHz) -80 dB (20 kHz)

Использование низкоомных резисторов также позволяет снизить смещение операционных усилителей входными токами, что также снижает шум, вызванный колебаниями токов ОУ.

Для снижения шумов активных компонентов в схеме использовано параллельное соединение каскадов . Конечно, можно было бы использовать современные малошумящие ОУ типа AD797 . Но это будет значительно дороже и сложнее (так как в одном корпусе содержится только один ОУ). Обращаю внимание, что речь идёт не о параллельном соединении микросхем (когда их напаивают этажеркой друг на друга), а о параллельном соединении усилительных каскадов. Только в этом случае шумы усилительных элементов будут некоррелируемые, за счёт чего общий уровень шума уменьшается на 3дБ при запараллеливании 2-х каскадов. При параллельном соединении 4-х каскадах шум уменьшается на 6дБ, т.е. в два раза.

Если запараллелить 8 каскадов, то шум уменьшится на 9 дБ, но для такого выигрыша затраты получаются неоправдано высоки.

Из-за применения низкоомных резисторов в регуляторе тембра номиналы конденсаторов получились гораздо больше привычных. Но сегодня это не является проблемой для современной элементной базы.

Линейный вход и регулятор баланса.

Для снижения шумов и помех непосредственно на входе усилителя установлен фильтр R1C1 и R2C2 . Буферные каскады IC1A и IC1B обеспечивают входное сопротивление порядка 50кОм и улучшают подавление синфазных помех. Непосредственно усилительный каскад собран на LM4562 (IC2A), коэффициент усиления которого регулируется потенциометром P1A. Этот же потенциометр в правом канале включен «противофазно» левому, за счет чего получается регулировка баланса. Обратная связь в каскаде реализована через два параллельных буфера IC3A и IC3b, за счёт чего достигается неизменность коэффициента усиления каскада независимо от изменения нагрузки. Кроме того, такое решение снижает уровень шума и обеспечивает низкое выходное сопротивление.

Типовая реализация регулятора баланса обычно негативно влияет на сцену и «виртуальное» расположение инструментов, из-за чего довольно редко встречается в Hi-End аппаратуре. Решение данного узла, предложенное Дугласом Селфом, не имеет этого недостатка.

Уровень шума этой части предусилителя составляет всего -109 дБ в среднем положении регулятора баланса, -106 дБ при максимальном и -116 дБ при минимальном положениях регулятора (в полосе частот 22 Гц до 22 кГц).

Регулятор тембра.

Несмотря на то, что выглядит регулятор несколько необычно, тем не менее здесь применена классическая схема регулятора тембра Баксандалла. Как отмечалось выше из-за низких номиналов переменных сопротивлений номиналы конденсаторов получаются существенно больше «типовых» значений.

Конденсатор С7 (1 мкФ) определяет нижнюю частоту регулировки тембра, а конденсаторы C8 и C9 имеют значение 100 нФ и определяют частоту регулировки тембра на ВЧ. При желании глубину регулировки тембра можно увеличить до ± 10 дБ. За счет элементов IC4 исключено взаимное влияние цепей НЧ и ВЧ при регулировании тембров.

Не смотря на большие габариты и высокую стоимость, для этой части схемы настоятельно рекомендуется применение полипропиленовых конденсаторов.

Уровень шума регулятора тембра составляет всего -113 дБ в среднем положении регуляторов.

Реле RE1 служит для отключения регулятора тембра, если в нём нет необходимости. В этом случае сигнал снимается с выхода IC2A и поступает напрямую на вход IC9B в обход регулятора тембра. Чтобы избежать щелчков при коммутации служит резистор R18. Для снижения перекрестных помех коммутация в каждом канале осуществляется отдельным реле. В этом случае контактные группы реле можно запараллелить, что снизит сопротивление контактов и дополнительно повысит надёжность этой части схемы.

Активный регулятор громкости.

Регулятор громкости также реализован по идее Питера Баксандалла, что во-первых позволило получить сверхнизкий уровень шума (особенно на малых громкостях), а во-вторых получить логарифмическую характеристику регулирования при использовании потенциометров с линейной зависимостью сопротивления от угла поворота. Максимальное усиление составляет +16 дБ, при этом точка 0 дБ получается в среднем положении потенциометра.

Четыре соединённых параллельно усилителя, как отмечалось выше, служат для снижения уровня шума на 6 дБ. Уровень собственных шумов такого регулятора составляет -101 дБ при максимальном усилении и -109 дБ при усилении 0 дБ. На практике регулятор громкости обычно устанавливается в положении -20 дБ, тогда уровень шума составит -115 дБ, который существенно ниже порога слышимости.

Чтобы вы могли оценить качество каждого каскада для них были приведены собственные уровни шумов. Результирующий уровень шума данного предусилителя, как нетрудно догадаться, будет несколько варьироваться в зависимости от положения потенциометров.

Симметричный выход реализован за счёт фазоинвертора на ОУ IC9A и имеет двойную амплитуду сигнала по сравнению с несимметричным. Впрочем, это нормально для профессиональной аудиотехники.

Конструкция и настройка.

Размещение элементов усилителя на плате:

Увеличение по клику

При сборке сначала запаиваются резисторы, а затем остальные компоненты.
Джампер JP1 предназначен для подбора оптимального подключения земли винил-корректора (есть аналогичные джамперы на платах MC / MD). Не забудьте их подключить. Место подключение подбирается экспериментально после сборки конструкции в корпусе.

Фото собранной платы:

Увеличение по клику

Данный блок настройки не требует.
Частотные характеристики усилителя и регулятора тембра:

Увеличение по клику

Список элементов:

Резисторы:
(1% точность; металло-плёночные; 0.25W)
R1,R2,R39,R40 = 100Ohm
R3-R6,R41-R44,R78,R79 = 100kOhm
R7-R12,R16,R17,R21-R24,R33,R34,
R45-R50,R54,R55,R59-R62,R71,R72 = 1kOhm
R13,R51 = 470Ohm
R14,R15,R52,R53 = 430Ohm
R18,R35,R36,R56,R73,R74 = 22kOhm
R19,R20,R57,R58 = 20Ohm
R25-R28,R63-R66 = 3.3kOhm
R29-R32,R67-R70 = 10Ohm
R37,R38,R75,R76 = 47Ohm
R77 = 120Ohm
P1,P2,P3,P4 = 1kOhm, 10%, 1W, stereo potentiometer, линейный, например Vishay Spectrol cermet type 14920F0GJSX13102KA. или, Vishay Spectrol conductive plastic type 148DXG56S102SP.

Конденсаторы:
C1,C2,C10-C14,C26,C27,C35-C39 = 100pF 630V, 1%, polystyrene, axial
C3,C4,C28,C29 = 47µF 35V, 20%, неполярный, диаметром 8mm, расстояние между выводами 3.5mm, например Multicomp p/n NP35V476M8X11.5
C5,C6,C30,C31 = 470pF 630V, 1%, polystyrene, axial
C7,C32 = 1µF 250V, 5%, polypropylene, расстояние между выводами 15mm
C8,C9,C33,C34 = 100nF 250V, 5%, polypropylene, lead spacing 10mm
C15,C16,C40,C41 = 220µF 35V, 20%, неполярные, диаметром 13mm,расстояние между выводами 5mm, например Multicomp p/n NP35V227M13X20
C17-C25,C42-C50 = 100nF 100V, 10%, расстояние между выводами 7.5mm
C51 = 470nF 100V, 10%, расстояние между выводами 7.5mm
C52,C53 = 100µF 25V, 20%, диаметр 6.3mm, расстояние между выводами 2.5mm

Микросхемы:
IC1,IC3,IC5-IC10,IC12,IC14-IC18 = NE5532, например ON Semiconductor type NE5532ANG
IC2,IC4,IC11,IC13 = LM4562, например National Semiconductor type LM4562NA/NOPB

Разное:
K1-K4 = 4-х контактный разъём, шаг 0.1’’ (2.54mm)
K5,K6,K7 = 2-х контактный разъём, шаг 0.1’’ (2.54mm)
JP1 = 2-х контактный джампер, шаг 0.1’’ (2.54mm)
K8 = 3-х контактный винтовой блок, шаг 5mm
RE1,RE2 = реле, 12V/960Ohm, 230VAC/3A, DPDT, TE Connectivity/Axicom type V23105-A5003-A201

Продолжение следует...

Статья подготовлена по материалам журнала «Электор» (Германия)

Удачного творчества!

Главный редактор «РадиоГазеты»

Что у меня имеется на данный момент:

1. Сам усилитель:

2. Естественно, блок питания оконечного усилителя:

При настройке УМ я использую устройство, которое обеспечивает безопасное подключение трансформатора УМ к сети (через лампу). Оно выполнено в отдельной коробочке со своим шнуром и розеткой и при необходимости подключается к любому устройству. Схема приведена ниже на рисунке. Для этого устройства требуется реле с обмоткой на 220 АС и с двумя группами контактами на замыкание, одна кнопка без фиксации (S2), одна кнопка с фиксацией или включатель(S1) . При замыкании S1 трансформатор подключается к сети через лампу, если все режимы УМ в норме, при нажатии на кнопку S2 реле через одну группу контактов замыкает лампу и подключает трансформатор напрямую к сети, а вторая группа контактов, дублируя кнопку S2 постоянно подключает реле к сети. В таком состоянии устройство находится до момента размыкания S1, или уменьшения напряжения меньше напряжения удержания контактов реле (в том числе и КЗ). При следующем включении S1 трансформатор опять подключается к сети через лампу, и так далее…

Помехозащищённость различных способов экранировки сигнальных проводов

3. Еще имеем собранную защиту АС от постоянного напряжения:

В защите реализованы:
задержка подключения АС
защита от постоянки на выходе, от КЗ
управление обдувом и отключение АС при перегреве радиаторов

Налаживание:
Предположим, всё собрано из исправных и проверенных тестером транзисторов и диодов. Изначально поставьте движки подстроечников в следующие положения: R6 — посередине, R12, R13 — в верхнее по схеме.
Стабилитрон VD7 поначалу не запаивайте. На ПП защиты разведены цепи Цобеля, необходимые для устойчивости усилителя, если они уже имеются на платах УМЗЧ, то их паять не нужно, а катушки можно заменить перемычками. В противном же случае катушки мотаются на оправке диаметром в 10 мм, например, хвосте сверла — проводом диаметром 1 мм. Длина получившейся намотки должна быть такой, чтобы катушка вставала в отведённые для неё на плате отверстия. После намотки рекомендую пропитать проволоку лаком или клеем, например, эпоксидкой или БФом — для жёсткости.
Провода, идущие от защиты к выходам усилителя, пока соедините с общим проводом, отключив от его выходов, разумеется. Необходимо соединить с «Меккой» УМЗЧ земляной полигон защиты, обозначенный на ПП пометкой «Main GND», иначе защита не будет правильно работать. Ну и, разумеется, площадки GND рядом с катушками.
Включив защиту с подключенными АС, начинаем уменьшать сопротивление R6 до щелчка реле. Открутив ещё один-два оборота подстроечника, отключаем защиту от сети, включаем две АС в параллель на любой из каналов и проверяем — сработают ли реле. Если не сработают — то всё работает как задумано, при нагрузке 2 Ома усилители к ней не подключатся, во избежание повреждения.
Далее отключаем провода «От УМЗЧ ЛК» и «От УМЗЧ ПК» от земли, включаем всё снова и проверяем, сработает ли защита, если на эти провода подавать постоянное напряжение около двух-трёх вольт. Реле должны отключать колонки — будет щелчок.
Можно ввести индикацию » Защита», если подсоединить цепочку из светодиода красного цвета свечения и резистора в 10 кОм между землёй и коллектором VT6. Этот светодиод будет показывать неисправность.
Далее настраиваем термоконтроль. Терморезисторы одеваем в водонепроницаемую трубку (внимание! они не должны намокнуть в ходе теста!).
Часто бывает так, что у радиолюбителя нет терморезисторов, указанных на схеме. Подойдут два одинаковых из имеющихся, сопротивлением от 4,7 кОм, но в этом случае сопротивление R15 должно равняться удвоенному сопротивлению последовательно включенных терморезисторов. Терморезисторы должны иметь отрицательный коэффициент сопротивления (уменьшать его с нагревом), позисторы работают наоборот и тут им не место.Кипятим стакан воды. Даём ему минут 10-15 подостыть в спокойном воздухе и опускаем в него терморезисторы. Крутим R13 до погасания светодиода «Перегрев» — Overheat , который должен был гореть изначально.
Когда вода остынет градусов до 50 (это можно ускорить, как именно — большой секрет) — крутим R12, чтобы погас светодиод «Обдув» или же FAN On.
Запаиваем стабилитрон VD7 на место.
Если глюков от запайки этого стабилитрона не обнаруживается, то всё нормально, но было такое, что без него транзисторная часть работает безупречно, с ним же — не хочет подключать реле ни в какую. В таком случае меняем его на любой с напряжением стабилизации от 3,3 В до 10В. Причина — утечка стабилитрона.
При нагревании терморезисторов до 90*С должен загораться светодиод «Overheat» — Перегрев и реле отключат АС от усилителя. При некотором остывании радиаторов всё подключится обратно, но такой режим работы аппарата должен как минимум насторожить владельца. При исправном вентиляторе и не забитом пылью туннеле срабатывания термала наблюдаться не должно вообще.
Если всё нормально, паяем провода на выхода усилителя и наслаждаемся.
Обдув (его интенсивность) настраивается подбором резисторов R24 и R25. Первый определяет производительность кулера при включенном обдуве (максимум), второй — когда радиаторы лишь чуть тёплые. R25 можно исключить вообще, но тогда вентилятор будет работать в режиме ВКЛ-ВЫКЛ.
Если реле имеют обмотки на 24В, то их надо соединить параллельно, если же на 12 — то последовательно.
Замена деталей. В качестве ОУ можно применить почти любой сдвоенный дешёвый ОУ в СОИК8 (от 4558 до ОРА2132, хотя, надеюсь, до последнего не дойдёт), например, TL072, NE5532, NJM4580 и т.п.
Транзисторы — 2n5551 меняются на ВС546-ВС548, либо на наши КТ3102. BD139 заменим на 2SC4793, 2SC2383, либо на подобный по току и напряжению, возможно поставить хоть КТ815.
Полевик меняется на подобный применённому, выбор огромен. Радиатор для полевика не требуется.
Диоды 1N4148 меняются на 1N4004 — 1N4007 или же на КД522. В выпрямителе же можно поставить 1N4004 — 1N4007 или использовать диодный мостик с током 1 А.
Если управление обдувом и защита от перегрева УМЗЧ не нужны, то не запаивается правая часть схемы — ОУ, терморезисторы, полевик и т.д, кроме диодного мостика и фильтрующего конденсатора. Если у вас уже есть источник питания 22..25В в усилителе, то можно использовать и его, не забывая о токе потребления защиты около 0,35А при включении обдува.

Рекомендации по сборке и настройке УМЗЧ:
Перед началом сборки печатной платы следует выполнить относительно несложные операции с платой, а именно – просмотреть на просвет, нет ли малозаметных при обычном освещении замыканий между дорожками. Заводское производство не исключает производственных дефектов, к сожалению. Пайку рекомендуется осуществлять припоем ПОС-61 или подобным с температурой плавления не выше 200* С.

Вначале следует определиться с применяемым ОУ. Крайне не рекомендуется применение ОУ от Analog Devices – в данном УМЗЧ их характер звучания несколько отличается от задуманного автором, а излишне высокая скорость может привести к неустранимому самовозбуждению усилителя. Приветствуется замена ОРА134 на ОРА132, ОРА627, т.к. они обладают меньшими искажениями на ВЧ. То же самое относится к ОУ DA1 – рекомендуется использовать ОРА2132, ОРА2134 (в порядке предпочтения). Допустимо использование ОРА604, ОРА2604, но при этом искажений будет несколько больше. Конечно, можно поэкспериментировать с типом ОУ, но на свой страх и риск. УМЗЧ будет работать и с КР544УД1, КР574УД1, но уровень смещения нуля на выходе увеличится и вырастут гармоники. Звук же…думаю, комментарии не нужны.

С самого начала монтажа рекомендуется попарно отобрать транзисторы. Это не необходимая мера, т.к. усилитель будет работать и при разбросе 20-30%, но если вы ставите цель получить максимальное качество, то уделите этому внимание. Особо следует выделить подбор Т5, Т6 – их лучше всего использовать с максимальным Н21э – это снизит нагрузку на ОУ и улучшит его выходной спектр. Т9, Т10 также должны иметь как можно более близкое усиление. Для транзисторов защёлки подбор необязателен. Выходные транзисторы – если они из одной партии, можно не подбирать, т.к. культура производства на Западе несколько выше привычной нам и разброс укладывается в 5-10%.

Далее, вместо выводов резисторов R30, R31 рекомендуется впаять отрезки провода длиной пару сантиметров, поскольку потребуется подбор их сопротивлений. Начальное значение в 82 Ом даст ток покоя УН примерно 20..25 мА, статистически же получалось от 75 до 100 Ом, это сильно зависит от конкретных транзисторов.
Как уже отмечалось в теме по усилителю, использовать транзисторные оптроны не стоит. Поэтому ориентироваться стоит на АОД101А-Г. Импортные диодные оптопары не опробовались из-за недоступности, это временно. Наилучшие результаты получаются на АОД101А одной партии для обеих каналов.

Помимо транзисторов, попарно стоит подобрать комплементарные резисторы УНа. Разброс не должен превышать 1%. Особо тщательно нужно подобрать R36=R39, R34=R35, R40=R41. Для ориентира отмечу, что с разбросом более 0,5 % на вариант без ООС лучше не переходить, т.к. будет рост чётных гармоник. Именно невозможность достать точные детали в своё время остановила эксперименты автора по безООСному направлению. Введение же балансировки в цепь токовой ОС решает проблему не полностью.

Резисторы R46, R47 можно запаять по 1 кОм, но если есть желание более точно настроить токовый шунт, то лучше поступить так же, как и с R30, R31 – впаять проводки для подпайки.
Как выяснилось по ходу повторения схемы, при некотором стечении обстоятельств возможно возбуждение в цепи слежения ЭА. Это проявлялось в виде неконтролируемого дрейфа тока покоя, а особенно – в виде колебаний частотой около 500 кГц на коллекторах Т15, Т18.
Необходимые коррективы изначально заложены в эту версию, но проверить осциллографом всё же стоит.

Диоды VD14, VD15 вынесены на радиатор для температурной компенсации тока покоя. Это можно сделать, подпаяв провода к выводам диодов и приклеив их к радиатору клеем типа «Момент» или подобным.

Перед первым включением необходимо тщательно отмыть плату от следов флюса, просмотреть на отсутствие замыканий дорожек припоем, убедиться, что общие провода подсоединены к средней точке конденсаторов блока питания. Также настоятельно рекомендуется использовать цепь Цобеля и катушку на выходе УМЗЧ, на схеме они не показаны, т.к. автор считает их применение за правило хорошего тона. Номиналы этой цепи обычны – это последовательно включённые резистор 10 Ом 2 Вт и конденсатор К73-17 или подобный ёмкостью 0,1 мкФ. Катушка же наматывается лакированным проводом диаметром 1 мм на резисторе МЛТ-2, число витков – 12…15 (до заполнения). На ПП защиты эта цепь разведена полностью.

Все транзисторы ВК и Т9, Т10 в УН – крепятся на радиаторе. Мощные транзисторы ВК устанавливаются через слюдяные прокладки и для улучшения теплового контакта используется паста типа КПТ-8. Околокомпьютерные же пасты применять не рекомендуется – высока вероятность подделки, да и тесты подтверждают, что зачастую КПТ-8 – это лучший выбор, к тому же очень недорогой. Чтобы не влететь на подделку – используйте КПТ-8 в металлических тюбиках, наподобие зубной пасты. До этого пока ещё не добрались, к счастью.

Для транзисторов в изолированном корпусе использование слюдяной прокладки необязательно и даже нежелательно, т.к. ухудшает условия теплового контакта.
Последовательно с первичной обмоткой сетевого трансформатора обязательно включите лампочку на 100-150Вт – это спасёт от многих неприятностей.

Закоротите выводы светодиода оптрона D2 (1 и 2) и включите. Если всё собрано правильно, то потребляемый усилителем ток не должен превышать 40 мА (выходной каскад будет работать в режиме В). Постоянное напряжение смещения на выходе УМЗЧ не должно превышать 10 мВ. Размокните светодиод. Ток, потребляемый усилителем, должен возрасти до 140…180 мА. Если он возрастает больше, то проверьте (рекомендуется делать это стрелочным вольтметром) коллекторы Т15, Т18. Если всё работает верно, там должны быть напряжения, отличающиеся от питающих примерно на 10-20 В. В случае, когда это отклонение меньше 5 В, а ток покоя слишком большой – попробуйте поменять диоды VD14, VD15 на другие, очень желательно, чтобы они были из одной партии. Ток покоя УМЗЧ, если он не укладывается в диапазон от 70 до 150 мА, можно установить также подбором резисторов R57, R58. Возможная замена для диодов VD14, VD15: 1N4148, 1N4001-1N4007, КД522. Либо же снизьте протекающий через них ток одновременным увеличением R57, R58. В мыслях была возможность реализации смещения такого плана: вместо VD14, VD15 использовать переходы БЭ транзисторов из тех же партий, что и Т15, Т18, но тогда придётся существенно увеличивать R57, R58 – до полной настройки получившихся токовых зеркал. При этом вновь вводимые транзисторы должны быть в тепловом контакте с радиатором, как и диоды, вместо которых они ставятся.

Далее нужно установить ток покоя УНа. Оставьте усилитель включенным и через 20-30 минут проверьте падение напряжения на резисторах R42, R43. там должно падать 200…250 мВ, что означает ток покоя 20-25 мА. Если он больше, то необходимо снизить сопротивления R30, R31, если меньше-то, соответственно, увеличить. Может случиться такое, что ток покоя УНа будет несимметричным – в одном плече 5-6мА, в другом 50мА. В этом случае выпаяйте транзисторы из защёлки и продолжайте пока без них. Эффект не нашёл логического обьяснения, но исчезал при замене транзисторов. Вообще – в защёлке нет смысла использовать транзисторы с большим Н21э. Достаточно усиления от 50.

После настройки УНа снова проверяем ток покоя ВК. Его следует мерить по падению напряжения на резисторах R79, R82. Току 100 мА соответствует падение напряжения 33 мВ. Из этих 100 мА около 20 мА потребляет предконечный каскад и до 10 мА может уходить на управление оптроном, поэтому в случае, когда на этих резисторах падает, например, 33 мВ – ток покоя составит 70…75мА. Уточнить его можно по замерам падения напряжения на резисторах в эмиттерах выходных транзисторов и последующего суммирования. Ток покоя выходных транзисторов от 80 до 130 мА можно считать нормальным, при этом заявленные параметры полностью сохраняются.

По результатам замеров напряжений на коллекторах Т15, Т18 можно сделать вывод о достаточности управляющего тока через оптрон. Если Т15, Т18 почти в насыщении (напряжения на их коллекторах отличаются от питающих менее чем на 10 В) – то нужно уменьшить номиналы R51, R56 примерно в полтора раза и провести повторный замер. Ситуация с напряжениями должна измениться, а ток покоя – остаться преждним. Оптимальным считается случай, когда напряжения на коллекторах Т15, Т18 равны примерно половине питающих напряжений, но вполне достаточно отклонения от питания на 10-15В, это резерв, который нужен для управления оптроном на музыкальном сигнале и реальной нагрузке. Резисторы R51, R56 могут нагреваться до 40-50*С, это нормально.

Мгновенная мощность в самом тяжёлом случае – при выходном напряжении близком к нулю – не превышает 125-130 Вт на транзистор (по техусловиям допускается до 150Вт) и действует она практически моментально, что не должно повести за собой каких-либо последствий.

Срабатывание защёлки можно определить субьективно-по резкому снижению выходной мощности и характерному «грязному» звучанию, проще говоря – в АС будет сильно искажённый звук.

4. Предварительный усилитель и его БП

Материал по Высококачественному ПУ:

Служит для тембровой коррекции и тонкомпенсации при регулировании громкости. Возможно использование для подключения наушников.

В качестве темброблока использован хорошо себя зарекомендовавший ТБ Матюшкина. Он имеет 4хступенчатую регулировку НЧ и плавную регулировку ВЧ, а его АЧХ хорошо соответствует слуховому восприятию, во всяком случае, классический мостовой ТБ, (который тоже может быть применён), слушателями оценивается ниже. Реле позволяет при необходимости отключить всякую частотную коррекцию в тракте, уровень выходного сигнала настраивается подстроечным резистором по равенству усиления на частоте 1000 Гц в режиме с ТБ и при обходе.

Расчётные характеристики:

Кг в диапазоне частот от 20 Гц до 20 кГц — менее 0,001% (типовое значение порядка 0,0005%)

Номинальное входное напряжение, В 0,775

Перегрузочная способность в режиме обхода ТБ — не менее 20 дБ.

Минимальное сопротивление нагрузки, при котором гарантируется работа выходного каскада в режиме А — при максимальном размахе выходного напряжения «от пика до пика» 58В 1,5 кОм.

При использовании ПУ только с проигрывателями СД допустимо снижение напряжения питания буфера до +\-15В потому как диапазон выходного напряжения таких источников сигнала заведомо ограничен сверху, на параметрах это не отразится.

Полный комплект плат состоит из двух каналов ПУ, РТ Матюшкина (одна плата на оба канала) и блока питания. Печатные платы разработаны Владимиром Лепёхиным.

Результаты измерений:

Предыстория проекта такая, примерно в 2008 года, тогда малоизвестный waso (Вадим Могильный) выложил на радиолюбительских форумах Веголаб и Паяльник на обсуждение свой проект — схему усилителя собственной разработки. Авторское название проекта было УНЧ Натали. Схема усилителя разрабатывалась за долго до выкладывания на форумах, еще в 1996-м году. Первые модели УНЧ Натали собирались на отечественных деталях, по причине, что в г. Новокузнецке в середине 90-х с импортом было туго. Даже на отечественной комплектации УНЧ звучал достаточно неплохо, шумы были еле различимы только в непосредственной близости от АС. Сейчас то конечно УНЧ Натали и вся последующая линейка модификаций переведены на импорт. Первые модели УНЧ прошли проверку в нещадном режиме на дискотеках и озвучке разных мероприятий.

В обсуждении проекта, в т.ч. высказывая критические замечания участвовало много форумчан. Но самую большую и непосредственную помощь автору в развитии проекта оказали tsf54 (Сергей) и Shurika (Вадим). Проведена огромная работа: на макетах делалась подгонка режимов, замеры, подбор элементной базы, потом прослушка, отбраковка … и все по новой.

Результатом такой работы стал УНЧ Натали ЭА. Режим работы выходного каскада — SuperA (экономичный А) при токе покоя от 80 до 120 мА.

Технические параметры УМЗЧ:
Номинальная выходная мощность, Вт (про_версия — четыре пары выходных транзисторов) — 300 Вт\ 4 Ом
Урезанная версия, Вт (домашняя_версия — две пары выходных транзисторов) — 150 Вт\4 Ом.
Кг (THD) на номинальной выходной мощности на частоте 1 кГц, не более 0,0008% (типовое значение — не более 0,0006%)
Коэффициент интермодуляционных искажений, не более 0,002% (типовое значение-менее 0,0015%)

Для домашней версии была разведена односторонняя ПП, для компактности монтажа диоды VD18, 19 крепятся со стороны пайки.

УНЧ Nataly ЭА монтаж на радиаторе

Монтаж выходного каскада в один ряд на радиатор не получил широкого распространения, но в макете был опробован:

Собрали УНЧ Натали ЭА домашнюю и про_версии не меньше сотни раз, но особенно хочется выделить из этого потока сборку dimon (Дмитрий г. СПб). В УНЧ все должно быть прекрасно: звук, детали, корпус… Попробуйте сделать подобный корпус дома.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении